Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__from(X)) → FROM(activate(X))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__from(X)) → FROM(activate(X))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__from(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
Used ordering: Polynomial interpretation [25]:
POL(0) = 1
POL(ACTIVATE(x1)) = x1
POL(FIRST(x1, x2)) = x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x2
POL(first(x1, x2)) = x1 + x2
POL(from(x1)) = 1 + x1
POL(n__first(x1, x2)) = x1 + x2
POL(n__from(x1)) = 1 + x1
POL(n__s(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
The following usable rules [17] were oriented:
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
activate(X) → X
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
first(0, X) → nil
from(X) → cons(X, n__from(n__s(X)))
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__s(X)) → ACTIVATE(X)
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( n__first(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( cons(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
M( first(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( FIRST(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
M( ACTIVATE(x1) ) = | 0 | + | | · | x1 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
activate(X) → X
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
first(0, X) → nil
from(X) → cons(X, n__from(n__s(X)))
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25]:
POL(0) = 1
POL(ACTIVATE(x1)) = x1
POL(FIRST(x1, x2)) = x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x2
POL(first(x1, x2)) = 1 + x1 + x2
POL(from(x1)) = 0
POL(n__first(x1, x2)) = 1 + x1 + x2
POL(n__from(x1)) = 0
POL(n__s(x1)) = 1 + x1
POL(nil) = 1
POL(s(x1)) = 1 + x1
The following usable rules [17] were oriented:
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
activate(X) → X
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
first(0, X) → nil
from(X) → cons(X, n__from(n__s(X)))
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.